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We consider the unsteady problem of radiative-conductive heat transfer in a plane, por- 
ous-permeable layer of a gray medium. In the one-dimensional approximation, the boundary- 
value problem has the form [i]: 

(1 m) aT aT a [Z aT I aq 
- -  PC-ai- + mplc]v a~ -- ax i, 'gT-x ] - -  'gT, t > 0; 

)~-~xaT = (r -4- mostly) (T -- T,) + el(~ (T a -- T I), x = xo; 

~"-gT-aT = (a 2 + mplclv ) (T 2 - -  T) + a.zcr (T 42- r4),  x ---- X l ;  

T(x,  O) = To(x), x ~ [xo, x,],  
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(2) 

(3) 

(4) 

where 

aqax = 2•176 {2T* (x, t) - -  T 4 (xo, t) K~ (• - -  T 4 (Xl, t) K 2 (• (x, - -  x)) - -  

- - •  T 4 ( z , t )  K , ( •  ; 

~0 
1 

0 

m is the material porosity; p, pf, c, cf are the density and heat capacity of the material 
and the coolant; % is the thermal conductivity of the material taking porosity into account; 
am, a2, Ez, ~2 are the coefficients of surface heat release and the degree of blackness for 
the heated and cooled sides, respectively; v is the transfer rate of coolant; n is the index 
of refraction; and K the absorption coefficient of the material. 

Assuming that the mass outflux of coolant g = pfv is constant, and that the material- 
temperature dependence of cf can be neglected, we make the boundary-value problem (1)-(4) 
dimensionless in the following fashion: 

0 = T / T , , ~  1 = T , / T , , ~  2 = T J T , , O  o = To /T , ,~  = c/c , ,  

X = ~ / ~ . ,  ~ = t / t , ,  x = L ~  + Xo~ L = x ,  - -  x o, ~ E [ 0 , t ] .  

Here, T, and t, are characteristic temperature and time; c, and X, the characteristic heat 
capacity and thermal conductivity of the material. 

Introducing the notation 

= (1 - -  m) pc ,L2 / ( t ,~ , ) ,  Pe = mclgL/~  , ,  

L N ~  = ~iL/%, ,  Lo ~ L• Sh = o T , L /  , ,  i = 1, 2, 

and omitting the bar over the dimensionless variables E, ~, we obtain a statement of bound- 
ary-value problem (1)-(4): 

oo ao a / ao ~ a~ 
~c--~ + Pe~-~ = -~-~( ) Z - ~  - - S h - ~ ,  ~ > 0 ,  ~ [ O ,  ll; ( 5 )  

a0 )~ -~$ -= ( N u ,  + Pe) (0 -- (o~) + e,Sh (0 4 -- c%), ~ = 0; (6) 
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In this case 

OO Pe)  (0 a)~) +- o~ ~ ~ = - ( x ~ +  - ~ s ~ ( ~ - o ~ ) ,  ~=:~; 

o(L o) = Oo(~). 

(7 )  

(S)  

.... ~ . . . .  2L~ { 204 (~' ~) - -  K~ (Lo~ + xo) 0 ~ (0, ~) - -  K~ (L o (1 - -  ~)) 0 ~ (1, z) - -  

1 1 - L o  ,! 0~ (~, ~) K~ (L0 I~ - -  z I) d~ .  
0 

We c o n s i d e r  a p r o c e d u r e  f o r  n u m e r i c a l  s o l u t i o n  o f  b o u n d a r y - v a l u e  p r o b l e m  ( 5 ) - ( 8 )  u s i n g  
the collocation finite element method [2]. We break up the one-dimensional computational 
region ~ e [0, i] into s three-noded finite elements. Then s = 2s + 1 is the number of 
nodes in the computational region. 

Dividing the computational region into s - 1 subintervals and setting 

we have 

z = Az(~ + i - - 1 ) ,  Az = 1 / ( l l  - -  1), i ----- 1, 2 . . . . .  11 -- t ,  

0 

Finally, 
proximation for the exponential integrals 

Z I 

i=I j=1 

i=1 ]=1 

Here  y j  a r e  w e i g h t s ;  z j  t h e  G a u s s i a n  q u a d r a t u r e  n o d e s ;  z j  = ~ z ( i  - 1 + ( J j  + 1) /21) ;  

o r d e r  o f  t h e  G a u s s i a n  q u a d r a t u r e  f o r m u l a .  To a p p r o x i m a t e  t h e  i n t e g r a l  t e r m  in  (61) 

d~,  we u s e  a f i n i t e  e l e m e n t  r e p r e s e n t a t i o n ,  s e t t i n g  

introducing the substitution of variables J = 2z - i, J e [-i, I], we obtain an ap- 

r is the 
1 

j 0 4 (~, T) • 
0 

001, T ) =  0,(~)NU0]), ~t : :  1, 2, 3 

i n  t h e  f i n i t e  e l e m e n t .  ( T h e r e  i s  i m p l i e d  summat ion  o v e r  t h e  i n d e x  ~. 
ues of 0, NP are the finite element basis functions. ) 

Then 
3 

O(~, ~) = E {0~(~)N'~(~)} t 

@p are the nodal val- 

Introducing the notation 

1 

& (~1 = 6 f ( N l y  (X~) ~ (X~I'KI (Lo l ~ - -  n l) dn, 
o 

w h e r e  t h e  i n d i c e s  a ,  ~, ~, ~, and p a r e  d e f i n e d  in  T a b l e  l ,  we o b t a i n  

l 

~1~2u8. 
~ I  

We apply the finite element method of collocation in ~, and an implicit finite differ- 
ence scheme of first order in �9 to Eqs. (5)-(8). As a result, at the nodes of the computa- 
tional region we have a system of s nonlinear algebraic equations: 

(32NP'OAvON ~" cLY~t ~:o p,) Oq),v ~ ( 9 )  
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TABLE I 

o o 

2 
2 
l 
i 

6 

i 
i 
6 
6 
6 

t2 
i2 

i2 
4 
4 
4 
4 
4 
4 

9 
iO 
l i  
i2 
:13 
i 4  
15 

TABLE 2 

T c ~, T c ~, 

iO 
300 
500 

t500 

0,80 
0,88 
i ,22 
i ,80 

0,30 
0,35 
0,40 
0,50 

2000 
2500 
3005 

2,i0 
2,16 
2,21 

0,62 
0,70 
054 

aN ~ 
Pe 

= - -  ml(Aru1 + Pe + elS~m~), ~ = 0; ( 1 0 )  

= - - m 2  (Nu~ + Be + %Sh~]) ,  ~ = t ;  ( 1 1 )  

a@ v 
a t ,  = 2non2 {20~ - -  g 2 (no~ + xo) 0~ - -  g e  ( n  o ( i  - -  ~)) o~  - -  n j  (~)}, 

~ [ O , i ] ,  v = 2 . . . . .  l l - - l .  

Here cv, I v are the nodal values of c and i; 5v~ is the Kronecker delta symbol. 

Applying Newton's method [3] to system (9)-(11), we have O~ = ~v + A0 v. Here ~ is the 
starting approximation (in the first time step, the initial data are used for this value), 
and &0 v is a small correction term. System (9)-(11) reduces to a system of linear algebraic 
equations of the form 

Q~AO~ : R v. ( 1 2 )  

Explicit expressions for the coefficients Q, R are not given, due to the unwieldiness of 
these expressions. At each time step, the solution to system (12) is sought until the con- 
dition [50v[ < ~ is satisfied for all v (E is a small quantity on the order of 10-s-10-6). 

This algorithm was implemented in FORTRAN-77 on an IBM PC/AT286. The average computa- 
tional time on a mesh of i0 finite elements (21 nodes) is 7-10 min. 

Below we give the results of calculations done using the following thermophysical and 
optical parameters: A% = 6.10 -4, NUI = 1.22, NU2 = 0.12, S k = 18.84, ~i = 0.9, ~2 = 0.i, 
80 = 0.5, Pe = 9.92, T, = 3000 K, L = 0.03 m, n = 1.5, gz = 0.85, ~2 = 0.35. 

The results of solving the system of equations (12) reflect the dynamics of the heating 
of a plane, semitransparent body whose surface is exposed to radiative-convective heating. 
These results are shown in Figs. 1-3. 

Figure 1 shows the dimensionless temperature 8 as a function of the dimensionless coor- 
dinates $ for an initial dimensionless temperature of 80 = 0.5, with constant heat capacity 
and thermal conductivity. In this figure, the numbers above the curve correspond to the di- 
mensionless time. Figure 2 illustrates the temperature distribution for the same parameters, 
but with 00 = 0.1. Figure 3 shows the temperature field for an initial temperature of 8 o = 
0.5 and with variable c(8), I(8). The temperature dependences of the latter are given in 
Table 2. 
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The parametric dependence of the temperature distribution on Pe = 2, i0 (curves i, 2) 
is shown in Fig. 4 for dimensionless time ~ = 0.01 and 80 = 0.5. It is evident that with 
increasing separation of the hot and cold surfaces, the temperature curves increasingly 
differ from one another, both quantitatively and qualitatively. This is explained by the 
fact that because the velocity of the injected gas increases with increasing distance from 
the hot wall, the hot gas is not able to release heat to the solid skeleton. The tempera- 
ture fields shown in the figures for various thermophysical and optical properties quite 
rapidly approach a steady state. 

We compared calculations in which the dimensionless values c, % were constant in time 
with those in which these values depended on e(~, ~). In the second case, there values 
were approximated by those given in Table 2. It is clear from an analysis of the computa- 
tional results that taking the dependence of c and % on 8 into account drags out the time 
it takes to approach a steady state and insignificantly influences the quantitative indi- 
cators. 

i. 

2. 

3. 
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